
0
.5

se
tg

ra
y
0

0
.5

se
tg

ra
y
1

Genetic Algorithms and Genetic
Programming

Pavia University and INFN
Second Lecture

Eric W. Vaandering
ewv@fnal.gov

Vanderbilt University

Eric Vaandering – Genetic Programming, # 2 – p. 1/47



Course Outline
• Machine learning techniques
• Genetic Algorithms

• Review
• Genetic Programming

• Basic concepts and differences from Genetic
Algorithms

• Genetic operators for Genetic Programming
• Example
• Generating constants
• Applications

Eric Vaandering – Genetic Programming, # 2 – p. 2/47



Review of Genetic Algorithms
Let’s recall the key points of what we learned last time:

• Genotype to phenotype matching
• (Binary) string codes to model in determined way

• Subsequent generation created from previous generation
according to biological models
• Cloning
• Crossover (sexual recombination)
• Mutation

• Each individual has a fitness
• Which individuals reproduce determined by fitness relative

to others
• All choices are made randomly

Eric Vaandering – Genetic Programming, # 2 – p. 3/47



Genetic Programming
Almost all of what we learned with Genetic Algorithms can be
applied to genetic programs. But, instead of evolving a genotype
(a binary string) which maps to a phenotype (a predetermined
model) we will directly evolve the phenotype (a computer
program). This program will (we hope) solve the problem we
pose. Remember our supposition from last time:

Since we will use computer programs to implement our
solutions, maybe the form of our solution should be a

computer program.

This has the advantage of not specifying, in advance, the form
our solution will take.

Eric Vaandering – Genetic Programming, # 2 – p. 4/47



Genetic Programming
“How can computers learn to solve problems without being
explicitly programmed? In other words, how can computers be
made to do what is needed to be done, without being told exactly
how to do it?”

— Attributed to Arthur Samuel, 1959
(Pioneer of Artificial Intelligence,
coined term “machine learning”)

“Genetic programming is automatic programming. For the first
time since the idea of automatic programming was first discussed
in the late 40’s and early 50’s, we have a set of non-trivial,
non-tailored, computer-generated programs that satisfy Samuel’s
exhortation: ‘Tell the computer what to do, not how to do it.’ ”

— John Holland, University of Michigan, 1997
(Pioneer of Genetic Algorithms)

Eric Vaandering – Genetic Programming, # 2 – p. 5/47



Programming Assumptions
When we normally program, we assume a number of guidelines:

• Correctness: The solution works perfectly
• Consistency: The problem has one preferred solution
• Justifiability: It is apparent why the solution works
• Certainty: A solution exists
• Orderliness: The solution proceeds in a orderly way
• Brevity: Every part of the solution is necessary, a shorter

solution is better (Occam’s Razor)
• Decisiveness: We know when the solution is complete

Genetic Programming requires that all of
these assumptions be discarded

Eric Vaandering – Genetic Programming, # 2 – p. 6/47



GP principles
In fact, in Genetic Programming:

• Correctness: A solution may be “good enough”
• Consistency: Many very different solutions may be found
• Justifiability: It may be very unclear how or why a solution

works
• Certainty: A perfect solution may never be found
• Orderliness: A solution may be very disorganized
• Brevity: Large parts of the solution may do nothing
• Decisiveness: We may never know if the best solution has

been found

Eric Vaandering – Genetic Programming, # 2 – p. 7/47



GP Representations
In Genetic programming, instead of a binary string, we build,
mutate, and cross-over programs. Internally, this is often (at least
originally) done in LISP because these types of operations are
easy in LISP’s representation (everything is a function).

Let’s look at a simple function:

C code: LISP Code:

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

(IF (> x y)
(+ (* x x) y)
(+ (* y y) x)

)

Eric Vaandering – Genetic Programming, # 2 – p. 8/47



Tree Representation
GP operations are even easier to illustrate if we adopt a “Tree”
representation of a program. In this representation our example
becomes:

C code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

*

x x

y

+

*

y y

x

Eric Vaandering – Genetic Programming, # 2 – p. 9/47



Tree Representation, cont.
From a fraction of our tree, we can see a few things:

+

*

x x

y

Two kinds of “nodes”
• There are functions (IF, >, +, ∗)
• There are “terminals” (x, y)
• A function can have any number of

arguments (IF has three, sin x has
one)

If we allow any function or terminal at any position, then all
operations must be allowed:

• IF (float)
• x + (y > x)

• Divide by zero (if we use division)

Eric Vaandering – Genetic Programming, # 2 – p. 10/47



Prepatory Steps
In the Genetic Algorithm, we began by defining a representation.
(A binary string that mapped to the “physical” model).

In Genetic programming, we do something a little different. We
choose a set of terminals (variables, for instance) and a set of
functions (which take these variables as parameters). These
“atoms” or “nodes” will form the basis of our programs
(solutions).

As in the Genetic Algorithm, we have to define the fitness of a
program for solving the problem.

Eric Vaandering – Genetic Programming, # 2 – p. 11/47



Building a tree
Trees are randomly built up one node at a time.

IF Root node ’IF’ has 3 args.

Eric Vaandering – Genetic Programming, # 2 – p. 12/47



Building a tree
Trees are randomly built up one node at a time.

IF

>

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.

Eric Vaandering – Genetic Programming, # 2 – p. 13/47



Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’

Eric Vaandering – Genetic Programming, # 2 – p. 14/47



Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Next branch started

Eric Vaandering – Genetic Programming, # 2 – p. 15/47



Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

* x

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Next branch started
Final branch started

Eric Vaandering – Genetic Programming, # 2 – p. 16/47



Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Next branch started
Final branch started
Tree is complete
(all branches terminated)

Eric Vaandering – Genetic Programming, # 2 – p. 17/47



Crossover
Recall in GA, crossover was a swap of DNA at a chosen point.
Here’s how we do crossover in GP:

+

×

x x

y

+

y −

y x

Pick two parents

Eric Vaandering – Genetic Programming, # 2 – p. 18/47



Crossover
Recall in GA, crossover was a swap of DNA at a chosen point.
Here’s how we do crossover in GP:

+

×

x x

y

+

y −

y x

Pick two parents
Pick break point on each

Eric Vaandering – Genetic Programming, # 2 – p. 19/47



Crossover
Recall in GA, crossover was a swap of DNA at a chosen point.
Here’s how we do crossover in GP:

+

×

x −

y x

y

+

y x

Pick two parents
Pick break point on each
Swap sub-trees

Eric Vaandering – Genetic Programming, # 2 – p. 20/47



Crossover
Recall in GA, crossover was a swap of DNA at a chosen point.
Here’s how we do crossover in GP:

+

×

x −

y x

y

+

y x

Pick two parents
Pick break point on each
Swap sub-trees

We have two new indi-
viduals for our next gen-
eration

Eric Vaandering – Genetic Programming, # 2 – p. 21/47



Mutation
In GA, mutation was a bit flip at a single location.
Here’s how mutation works in GP:

+

×

x x

−

y y

Pick a parent

Eric Vaandering – Genetic Programming, # 2 – p. 22/47



Mutation
In GA, mutation was a bit flip at a single location.
Here’s how mutation works in GP:

+

×

x x

−

y y

Pick a parent
Pick a mutation point

Eric Vaandering – Genetic Programming, # 2 – p. 23/47



Mutation
In GA, mutation was a bit flip at a single location.
Here’s how mutation works in GP:

+

×

x x

Pick a parent
Pick a mutation point
Remove the subtree

Eric Vaandering – Genetic Programming, # 2 – p. 24/47



Mutation
In GA, mutation was a bit flip at a single location.
Here’s how mutation works in GP:

+

×

x x

−

x

Pick a parent
Pick a mutation point
Remove the subtree
Start a new subtree

Eric Vaandering – Genetic Programming, # 2 – p. 25/47



Mutation
In GA, mutation was a bit flip at a single location.
Here’s how mutation works in GP:

+

×

x x

−

x +

y x

Pick a parent
Pick a mutation point
Remove the subtree
Start a new subtree

Finish the new subtree just as
if it were a “root” tree

Mutation can often be very destructive in Genetic Programming
(as opposed to bit-flips in GA).
As in GA, both crossover and mutation are random processes.

Eric Vaandering – Genetic Programming, # 2 – p. 26/47



Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all nodes
< desired depth, pick terminals for all nodes at desired depth.

Eric Vaandering – Genetic Programming, # 2 – p. 27/47



Representations
In the simplest form of tree representation, input values and
output values must be of the same type.

• Have to assume a representation when mixing type of
functions
• Logical and real? Maybe > 0 is TRUE (1)

• Must protect against divide-by-zero,
√

< 0, log(< 0), etc.
• Type needn’t be simple (integer, float, etc.). Can be any

“object.”

There are also representations of GP which are not “tree”
representations. There are also strongly-type representations.

Eric Vaandering – Genetic Programming, # 2 – p. 28/47



Genetic Programming Example
Let’s take a look at an example of a simple Genetic
Programming excercise. This example is taken from

http://www.genetic-programming.com/gpquadraticexample.html
which goes into more detail.
The goal: create a computer program which outputs the same
values as x2 + x + 1 over the interval (−1,+1)

Notice the goal is not to create a program that is explicitly
x2 + x + 1. (Remember the 7 assumptions of programming we
had to discard.)

Eric Vaandering – Genetic Programming, # 2 – p. 29/47



GP Example Setup
Define functions:

We’ll keep this simple and pick +, −, ×, and /.
Remember / has to work for all values, so x/0 ≡ 1.

Define terminals:
We want the variable x, of course.
Also put in integers from (−5,+5).

Define fitness:
In theory, we’d like to use the integral of the area (absolute

value) between the program and x2 + x + 1 from (−1,+1)
In practice, we’ll do this numerically for maybe 100 points

Termination criterion:
Require the fitness of best individual < 0.01

With these few definitions, we are ready to run.

Eric Vaandering – Genetic Programming, # 2 – p. 30/47



GP Example, Generation 0
In our simple example, we will generate just 4 programs:

−

+

x 1

0

+

1 ×

x x

+

2 0

×

x −

−1 −2

x + 1 x2 + 1 2 x

These are our four starting trees and their algebraic equivalents.

Eric Vaandering – Genetic Programming, # 2 – p. 31/47



Generation 0 Fitness
Now let’s look at the four examples in our population

x + 1 x2 + 1 2 x

Here are the four programs from the previous slide and their
differences from x2 + x + 1 shown graphically. (The difference,
or fitness, is the area of the gray curve.)

x2 + 1 and x + 1 have the lowest (best) fitness.

As expected, randomly generated programs will not usually be
very efficient at solving even the simplest problems. But, some
will be better than others.

Eric Vaandering – Genetic Programming, # 2 – p. 32/47



GP Example, Generation 1
Now it’s time to “breed” a new generation of programs.

• Usually ∼ 90% crossover, ∼ 10% cloning, ∼ 1% mutation
• Our next generation: 2 crossover children, 1 clone, 1

mutation

First the clone, which happens to be the program with the best
fitness (likely to participate, but not necessarily as a clone).

−

+

x 1

0

Eric Vaandering – Genetic Programming, # 2 – p. 33/47



Generation 1, Mutation
Let’s assume the 3rd tree is chosen for mutation:

+

2 0

Location of “2” is randomly
chosen for mutation and is
removed.

+

/

x x

0
A new tree (x/x with protec-
tion) is inserted in its place.

Eric Vaandering – Genetic Programming, # 2 – p. 34/47



Generation 1, Crossover
Lastly, two programs are chosen for crossover giving two new
programs:

−

+

x 1

0

+

1 ×

x x

→

−

x 0

+

1 ×

+

x 1

x

Eric Vaandering – Genetic Programming, # 2 – p. 35/47



GP Example, Generation 1
Here are our four trees for Generation 1

−

+

x 1

0

+

/

x x

0

−

x 0

+

1 ×

+

x 1

x

x + 1 1 x x2 + x + 1

The final program is the perfect solution; the run is ended.

Eric Vaandering – Genetic Programming, # 2 – p. 36/47



Generation 1, Crossover
First, let’s look at the best solution and why finding it is not
completely random. It is the combination of two good traits from
its two parents (who were “better” programs than their
neighbors).

−

+

x 1

0

+

1 ×

x x

→

+

1 ×

+

x 1

x

Of course, the computer had no way of knowing which traits
were good, just which individuals had them.

Eric Vaandering – Genetic Programming, # 2 – p. 37/47



GP Example, Continued
Also, our simple example illustrates a few other points:

• Brevity: Many of the programs in our example could be
simplified:

+

/

x x

0

• 1st individual from generation 0 picked twice, 4th not picked
(lowest fitness)

• But, a perfect solution has been found, which is not
guaranteed in Genetic Programming

Eric Vaandering – Genetic Programming, # 2 – p. 38/47



Further points
Ok, so finding a program to “fit” x2 + x + 1 was easy. What if
our target function was 2.718x2 + 3.1416x or something similar?

There are two ways Genetic Programs accomplish this, one
implicit, one explicit:

• The GP can manufacture constants from functions and
operators

• Introduce the concept of an ephemeral random constant
(ERC). This is function that when first called, returns a
random number. Thereafter, it returns the same number. We
add this to our set of terminals. We denote this in our
terminal set by R.

We’ll look at both of these cases.

Eric Vaandering – Genetic Programming, # 2 – p. 39/47



Implicit Constant Generation
Let’s look for a function that is equal to cos 2x where x ranges
from 0 to 2π. (Example from Koza, Vol. I).

For terminals, we choose [x, 1.0, 2.0]. For functions, +, −, ×, /,
and sin. (We leave out cos to avoid trivial solutions).

In generation 30 of such a run, what
was found was this:
Where “Const” is a generated constant
defined on the next page.
This simplifies to sin(2−Const− 2x).

sin

−

−

2 ×

2 x

Const

Eric Vaandering – Genetic Programming, # 2 – p. 40/47



Implicit Constant Generation

The constant that is evolved is this:

This expression evaluates to 0.433, so
sin(2−Const−2x) becomes sin(1.567−2x).
π/2 = 1.571.

The identity “discovered” is

sin(
π

2
− 2x) = cos 2x.

sin

sin

sin

sin

sin

sin

×

sin

sin

1

sin

sin

1

Eric Vaandering – Genetic Programming, # 2 – p. 41/47



Implicit Constant Generation
How did this happen?

• Constant evolved over time
• First, sin 1.0 = 0.841

• Then, sin(sin 1.0) = 0.746

• Then, sin2(sin 1.0) = 0.556

• Then, successive applications of sin(x) to give 0.528,
0.504, 0.483, 0.464, 0.448, 0.433

Eric Vaandering – Genetic Programming, # 2 – p. 42/47



Explicit Constant Generation
We can also introduce the concept of an ephemeral random
constant (ERC). This is function that when first called, returns a
random number. Thereafter, it returns the same number. We add
this to our set of terminals. We denote this in our terminal set by
R.

This gives the GP a group of constants which can be combined to
create new constants.

For instance, let’s return to the problem of evolving
2.718x2 + 3.1416x with terminals of x and R.

Eric Vaandering – Genetic Programming, # 2 – p. 43/47



Explicit Constant Generation
After 41 generations, we can evolve the tree:

+

−

+

×

-0.50677 x

+

×

-0.50677 x

×

-0.76526 x

×

+

0.11737 x

+

−

x ×

-0.76526 x

x

Eric Vaandering – Genetic Programming, # 2 – p. 44/47



Explicit Constant Generation
This tree simplifies to the form 2.76x2 + 3.15x.

Recall we were looking for 2.72x2 + 3.14x.

Final point: The examples we’ve shown involve functions that
return a single number. This need not be the case. If your
framework is in C, your return value can be a structure. In C++ it
can be an object. If you want, you can even generate programs in
assembly code or even high level languages. The simplest
models follow this function-tree representation, but fully
specified grammars are possible with existing software.

Eric Vaandering – Genetic Programming, # 2 – p. 45/47



GP Applications
We can see that this might be applicable to a wide variety of
applications. Here are some proven examples:

• Symbolic regression (finding a functional form for a set of
data)

• Determining which combinations of 10,000 genes cause
cancer

• A filter to classify high energy physics events

This last example is the use I’ve been studying, so we’ll look at it
in more detail next time.

Eric Vaandering – Genetic Programming, # 2 – p. 46/47



GA & GP Resources
There is a lot of information on the web about Genetic
Algorithms and Programming:

• http://www.aic.nrl.navy.mil/galist/ —
Genetic Algorithms

• http://www.genetic-programming.org/ —
John Koza

Software frameworks for both GA and GP exist in almost every
language (most have several)

• http://www.genetic-programming.com/
coursemainpage.html#_Sources_of_Software

• http://zhar.net/gnu-linux/howto/ – GNU AI
HowTo (GA/GP/Neural nets, etc.)

• http://www.grammatical-evolution.org —
GA–GP Translator

Eric Vaandering – Genetic Programming, # 2 – p. 47/47


	Course Outline
	Review of Genetic Algorithms
	Genetic Programming
	Genetic Programming
	Programming Assumptions
	GP principles
	GP Representations
	Tree Representation
	Tree Representation, cont.
	Prepatory Steps
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Crossover
	Crossover
	Crossover
	Crossover
	Mutation
	Mutation
	Mutation
	Mutation
	Mutation
	Practical considerations
	Representations
	Genetic Programming Example
	GP Example Setup
	GP Example, Generation 0
	Generation 0 Fitness
	GP Example, Generation 1
	Generation 1, Mutation
	Generation 1, Crossover
	GP Example, Generation 1
	Generation 1, Crossover
	GP Example, Continued
	Further points
	Implicit Constant Generation
	Implicit Constant Generation
	Implicit Constant Generation
	Explicit Constant Generation
	Explicit Constant Generation
	Explicit Constant Generation
	GP Applications
	GA & GP Resources

